Practice problems

1. Independent RV's
(a) Suppose $X \stackrel{d}{=} \mathrm{N}[0,1]$ and $Y \stackrel{d}{=} \operatorname{Exp}[5]$ are independent random variables. Find the joint density $f_{X Y}(x, y)$.
(b) Suppose $X \stackrel{d}{=}$ Poisson[3] and $Y \stackrel{d}{=} \operatorname{Binom}[3,0.6]$ are independent random variables. Find their joint probability mass function.
2. Suppose $X \stackrel{d}{=} \operatorname{Unif}[0,2]$
(a) Compute the moment generating function $\mathrm{E}\left[e^{t X}\right]$.
(b) Compute the probability density $f_{Y}(y)$ for the random variable $Y=\log X$.
3. Suppose a dice is painted so that five of the sides are numbered " 1 " and the sixth side is numbered " 10 ". Random variables $X_{1}, X_{2}, \ldots, X_{100}$ are the values of 100 rolls of this dice.
(a) Compute the expected value $E\left[X_{1}\right]$ and variance $\operatorname{Var}\left[X_{1}\right]$.
(b) Use the central limit theorem to give an approximate probability density for the sum $X_{1}+X_{2}+$ $\ldots+X_{100}$.
4. By the weak law of large numbers, the sample mean of many dice rolls converges in probability to the expected value of a dice roll $(=3.5)$. Use Chebyshev's inequality to bound how many times the dice must be rolled for a 90% chance that the sample mean is between 3.4 and 3.6.
5. Suppose random variables X, Y have joint density given by

$$
f_{X Y}(x, y)= \begin{cases}C\left(x y^{2}+x^{2} y\right) & \text { if } 0<x<y<1 \\ 0 & \text { else }\end{cases}
$$

(a) Compute the constant C.
(b) Compute the conditional probability $P\left\{\left.X<\frac{1}{2} \right\rvert\, Y<\frac{1}{2}\right\}$
(c) Compute the conditional density $f_{X \mid Y}\left(x \left\lvert\, \frac{3}{4}\right.\right)$
(d) Compute the conditional probability $P\left\{\left.X<\frac{1}{2} \right\rvert\, Y=\frac{3}{4}\right\}$
(e) Are X and Y independent random variables? How do you know?
6. Use the method of Laplace transform to solve the following differential equation for the function $y(t)$

$$
\begin{gathered}
y^{\prime}+6 y=\delta_{1}(t) \\
y(0)=2
\end{gathered}
$$

7. Use the table

$f(x)$	$\widehat{f}(\xi)$
$\mathbb{1}_{[-a, a]}(x)$	$\frac{\sin (a \xi)}{\pi \xi}$
$f(x-c)$	$e^{-i c \xi} \widehat{f}(\xi)$
$f(c x)$	$\frac{1}{c} \widehat{f}\left(\frac{\xi}{c}\right)$

to compute the Fourier transform of the function

$$
f(x)= \begin{cases}2 & \text { if }-3<x<-1 \\ -1 & \text { if } 4<x<8 \\ 0 & \text { else }\end{cases}
$$

8. Use the Cooley-Tukey algorithm to compute the discrete Fourier transform of the following sample

$$
\begin{array}{c|cccc}
t & 0 & \pi / 2 & \pi & 3 \pi / 2 \\
\hline x(t) & 1.5 & 2.5 & -0.5 & -1.0
\end{array}
$$

9. Compute the indefinite integral from 0 to x of the following function.

$$
f(t)=3 \delta_{-2}(t)+\mathbb{1}_{[-5,5]}(t)
$$

Check that the distributional derivitive of your answer is $f(x)$
10. Suppose $\widehat{f}(\xi)=\frac{1}{1+\xi^{2}}$ and $\widehat{g}(\xi)=e^{-|x|}$. Compute the Fourier transform of the convolution $f * g$.

